Molecule vs SQL

SELECT *

sql"select * from PERSON".as[Person].list

With Molecule we only need to fetch the attributes that we need:

Person.name.age.get

Returned type is List[(String, Int)]

SELECT

sql"""
  select AGE, concat(concat(concat(NAME,' ('),ID),')')
  from PERSON
""".as[(Int,String)].list

With Molecule we would concatenate name and id with the returned result set:

Person.age.name.e.get map { case (age, name, id) => (age, s"$name ($id)" }

WHERE

sql"select * from PERSON where AGE >= 18 AND NAME = 'C. Vogt'".as[Person].list

Molecule filter values by applying a required value to an attribute or supply a value to compare against (>=(18)):

Person.age.>=(18).name("C. Vogt").get

(Again we would define which attribute values we want to return)

ORDER BY

sql"select * from PERSON order by AGE asc, NAME".as[Person].list

Ordering is applied on the result set:

Person.age.name.get.toSeq.sortBy(_._1)

Aggregations

sql"select max(AGE) from PERSON".as[Option[Int]].first

Aggregate functions like max are all applied as a keyword value to an attribute.

Person.age(max).get

or get a range of top 3 values

Person.age(max(3)).get

We can aggregate values also with the counterpart min or get a random value with rand. Or perform aggregate calculations with count, countDistinct, sum, avg, median, variance and stddev which are all built functions in Datomic.

GROUP BY

sql"""
  select ADDRESS_ID, AVG(AGE)
  from PERSON
  group by ADDRESS_ID
""".as[(Int,Option[Int])].list

Molecule automatically group by attributes not having an aggregate expression. In this case the query will group by address and calculate the average age for persons living there.

Person.address.age(avg).get

HAVING

sql"""
  select ADDRESS_ID
  from PERSON
  group by ADDRESS_ID
  having avg(AGE) > 50
""".as[Int].list
Person.address.age(avg).get.toSeq.filter(_._2 > 50)

Implicit join

sql"""
  select P.NAME, A.CITY
  from PERSON P, ADDRESS A
  where P.ADDRESS_ID = A.id
""".as[(String,String)].list
Person.name.Address.city.get

Explicit join

sql"""
  select P.NAME, A.CITY
  from PERSON P
  join ADDRESS A on P.ADDRESS_ID = A.id
""".as[(String,String)].list
Person.name.Address.city.get

left/right/outer join

sql"""
  select P.NAME,A.CITY
  from ADDRESS A
  left join PERSON P on P.ADDRESS_ID = A.id
""".as[(Option[String],String)].list
// Add `$` to attribute name to get optional values
val persons: List[(Option[String], String)] = Person.name$.Address.city.get

Subquery

sql"""
  select *
  from PERSON P
  where P.ADDRESS_ID in (select ID
                 from ADDRESS
                 where CITY = 'New York City')
""".as[Person].list
Person.age.name.Address.city_("New York City").get

INSERT

sqlu"""
  insert into PERSON (NAME, AGE, ADDRESS_ID) values ('M Odersky', 12345, 1)
""".first
Person.name("M Odersky").age(12345).address(1).save

UPDATE

sqlu"""
  update PERSON set NAME='M. Odersky', AGE=54321 where NAME='M Odersky'
""".first
// Find entity id with generic Molecule attribute `e`
val oderskyId = Person.e.name_("M Odersky").get.head
Person(oderskyId).name("M. Odersky").age(54321).update

DELETE

sqlu"""
  delete PERSON where NAME='M. Odersky'
""".first
// Retract entity
Person.e.name_("M. Odersky").get.head.retract

CASE

sql"""
  select
    case 
      when ADDRESS_ID = 1 then 'A'
      when ADDRESS_ID = 2 then 'B'
    end
  from PERSON P
""".as[Option[String]].list
Person.address(1 or 2).get map {
  case 1 => "A"
  case 2 => "B"
}

Next

Compare Slick…